
Interfacing Prolog with External Programs

This tutorial will show how the SWI-Prolog interpreter can be invoked from a C program.

1. Compiling, linking and running a native C program with
external libraries

Building a C program requires several phases that are automatically performed by the

building tools (in our case, Visual Studio). In order to create the interface between C and

Prolog programs, we need to understand first the separation between the compilation and

the linking phase from the build process.

In the compilation phase, the program’s source code is transformed into the binary

format that is understood by the processor (0s and 1s). If a call to an external function is

made (for example we call printf), the compiler doesn’t care where this function is

implemented, just that this function exists. In order to tell the compiler that printf

exists, we include the stdio.h header in our program. stdio.h doesn’t contain the

actual implementation, just the function definition. The binary code generated by the

compiler will call a function named printf, although it doesn’t know yet where the

function is.

In the linking phase of the build process, the program components will be put together in

order to generate the final executable. To continue with the printf example, we must

tell the linker to also include msvcrt.lib at this stage (this stands for MicroSoft

Visual C RunTime). This external library may contain the actual code for the desired

functions or just a stub that calls them from an external DLL (Dynamical Link Library).

In either case, the linker will associate the printf symbol with the actual

implementation and will be able to build the final executable.

The printf function that we discussed before is not implemented in msvcrt.lib,

but in a dynamical link library, called msvcrt.dll. This DLL will be loaded at run-

time (when the program is actually executed). For the operating system to know where to

find it, the folder that contains it must be in the PATH environment variable.

2. Setting the Visual Studio Environment to build and run
programs that interface with Prolog

SWI-Prolog offers headers to include, static libraries to link and dynamic link libraries to

link at run-time, in order to interface with C programs:

- the header files are located in c:\Program Files\swipl\include. We will use SWI-

Prolog.h (or SWI-cpp.h for the C++ library)

- the static libraries are located in c:\Program Files\swipl\lib. We will use

libswipl.dll.a, where the stubs of the actual implementations are present.

- the dynamic link libraries are

located in c:\Program

Files\swipl\bin\. Some of

the .dll files from there will be

loaded at run-time by our

program.

We will edit a project’s properties by

right-clicking it in the Solution

Explorer, then selecting the Properties

option.

Since our project will include SWI-

Prolog.h, we need to specify its

location: in the Properties window,

select Configuration Properties →

C/C++ → General, then type

‘c:\Program Files\swipl\include’ in the

Additional Include Directories field.

To link with the libswipl.dll.a static library, we must include its location

(‘c:\Program Files\swipl\lib’) in the Additional Library Directories field, at

Configuration Properties → Linker → General and its name in the Additional

Dependencies field, at Configuration Properties → Linker → Input.

Finally, to run or debug the program in Visual Studio, some environment variables must

be set. In Configuration Properties → Debugging, click on the Environment field, then

on the … button in the right to open the multi-line edit window.

In the new window, type the following lines:

PATH=c:\Program Files\swipl\bin;%PATH%

SWI_HOME_DIR=c:\Program Files\swipl

The first line adds SWI-Prolog’s dll’s directory to the system’s path. The operating

system will now be able to load our executable because all the libraries it depends on will

be found. The second line will set the environment variable SWI_HOME_DIR, to the

prolog installation path, so various resources can be loaded at run-time.

Observation: If you have a 32-bit Prolog installation on a 64-bit Windows, it will be

found in Program Files (x86) instead of Program Files dir.

3. Calling a Prolog built-in predicate from C

In order to use the provided Prolog interface, a C program must include the SWI-

Prolog.h library:
#include <SWI-Prolog.h>

At the beginning of the main() function, we must initialize the Prolog engine:
int main(int argc, char **argv){

 PL_initialise(argc, argv);

 …

The initialization function will fail if the environment variable SWI_HOME_DIR is not

set correctly.

In order to call a Prolog predicate, we must get a reference to it, using the function:
predicate_t PL_predicate(const char *name, int arity, const char* module)

For instance, to get a reference to the predicate plus with arity 3 from the Prolog

database, we will call:
predicate_t p_plus = PL_predicate("plus", 3, "database");

Before actually making the call, we also need to define the predicate terms. A term

reference can be obtained using the function
term_t PL_new_term_ref()

for a single term, or
term_t PL_new_term_refs(int n)

for several terms.

Since the plus predicate has 3 terms, we will ask for a sequence of 3 terms:
term_t t = PL_new_term_refs(3);

In order to address the first term in the sequence we will write t, for the second term t+1

and for the third term t+2.

We will try to use the plus predicate to solve the equation 2+X=5. In the Prolog

terminal, we would write plus(2, X, 5). To do the same thing in C, we must specify

the type and value for each term. The first and the third terms are integers, taking the

values 2 and 5, so we will write:
PL_put_integer(t, 2);

PL_put_integer(t+2, 5);

The second term is a variable that will contain the query result:
PL_put_variable(t+1);

To call a predicate, we will open a query using the function:
qid_t PL_open_query(module_t ctx, int flags, predicate_t p, term_t +t0)

For our example, we will call:
qid_t query = PL_open_query(NULL, PL_Q_NORMAL, p_plus, t);

A query can have zero, one, or several solutions. They can be iterated using the function:
int PL_next_solution(qid_t qid)

This function returns TRUE if a solution has been found and FALSE if there are no more

solutions. In case the query succeeded, the variables should be unified with the correct

results. In order to extract the result of our plus query, we will call:
int result = PL_next_solution(query);

if(result){

 int x;

 PL_get_integer(t+1, &x);

 printf("Found solution %d.\n", x);

}

In case more solutions are expected, they can be retrieved by calling

PL_next_solution in a do-while loop.

Finally, a query should be closed using the following function:
void PL_close_query(qid_t qid)

To wrap-up the above example, the following code can be used to solve the equation

2+X=5:

predicate_t p_plus = PL_predicate("plus", 3, "database");

term_t t = PL_new_term_refs(3);

PL_put_integer(t, 2);

PL_put_variable(t+1);

PL_put_integer(t+2, 5);

qid_t query = PL_open_query(NULL, PL_Q_NORMAL, p_plus, t);

int result = PL_next_solution(query);

if(result){

 int x;

 PL_get_integer(t+1, &x);

 printf("Found solution %d.\n", x);

}

PL_close_query(query);

4. Consulting an external source

To consult an external source file, we can call the built-in predicate consult from the C

program. The following example can be used to consult the source mylib.pl:

predicate_t p_consult = PL_predicate("consult", 1, "database");

term_t t = PL_new_term_ref();

PL_put_string_chars(t, "mylib.pl");

PL_call_predicate(NULL, 0, p_consult, t);

The function PL_call_predicate is a shorthand for opening a query, calling for the first

solution, then cutting the query.

The predicates defined in the external source can be used the same way as any built-in

predicate from Prolog.

5. Working with lists

A Prolog list is different than atomic types, which have C correspondents. In order to

work with a list in C, one needs to decompose it into head and tail.

5.1. Creating a list

In order to create a Prolog list in C, we need to start with the empty list then add each

element, from the last to the first, using the function:
PL_cons_list(lst, h, t);

The function constructs the list lst in the first argument, from the head h in the second

argument and the list t in the second argument as tail.

Assuming the term lst has already been created, the following code constructs the list

from the elements of the vector v:

int i;

term_t h = PL_new_term_ref();

PL_put_nil(lst); //initialize with the empty list

for(i=n-1; i>=0; --i){

 PL_put_integer(h, values[i]);

 PL_cons_list(lst, h, lst); //add h in front of the list

}

In the 3
rd

 line, the list is initialized with the empty list ([], or nil). Each element of the

vector, starting with the last one is put into the term h (line 5), which is then added at the

beginning of the list (line 6).

A list constructed this way can be fed to a Prolog predicate.

5.2. Traversing a list

In order to traverse a list, we must deconstruct it into head and tail, using the function:
PL_get_list(lst, h, t);

The function does the opposite of PL_cons_list(). If the resulting tail is not empty, it

can be further deconstructed in order to retrieve the remaining elements.

The following code will print all the elements in a list of integers:

term_t tail = PL_copy_term_ref(lst);

term_t head = PL_new_term_ref();

int x;

while(PL_get_list(tail, head, tail)){

 PL_get_integer(head, &x);

 printf("%d", x);

}

The first line copies the list reference into a new term called tail. In each iteration, the

tail is further deconstructed into the head, which is printed and a new tail. In order to

print the term head, we need to extract the integer x from it.

6. Problems

6.1. Study the source code of c_prolog. In the first part, the equation 2+X=5 is solved,

using the built-in plus predicate. The second part prints all the decompositions of a list,

using the append predicate. Finally, a predicate that extracts K random elements from a

list is called. The predicate rnd_select is called from an external file mylib.pl and it

uses the myrand predicate which is written in C.

6.2. Sudoku: A sudoku solver implemented in Prolog is given. It will take as input a list

Rows that contains 9 lists, each representing a 9-elements row from a sudoku grid. Each

element of the inner lists can be an integer from 1 to 9 or a free variable that will unify

with the correct digit in the solution. Complete the C implementation of a program that

reads a sudoku problem from a file, calls the Prolog engine and prints the solution on the

screen.

6.3. Wolf-Goat-Cabbage: Consult your implementation for the Wolf-Goat-Cabbage

problem from a C program in order to pretty-print the solution.

